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1. INTRODUCTION

A central issue in current discussions of the seismic monitoring capability
required to adequately verify any eventual Comprehensive Test Ban Treaty
(CTBT) concerns the definition of the threshold level of seismic event size or
magnitude down to which seismic events will have to be detected and identified.
It is generally agreed that the capability currently exists to unambiguously
identify almost all seismic events having magnitudes characteristic of well-
coupled underground nuclear explosions with yields greater than a few kilotons
(i.e., mp ~ 4, OTA (1988)). However, in the context of monitoring a CTBT,
consideration has to be given to the requirement to characterize the much smaller
signals which would be expected to result from various evasive testing practices
which might be employed by a nation pursuing a clandestine nuclear weapons
development program. For example, since it has been experimentally
demonstrated that it is possible to reduce the amplitude of the radiated seismic
signal of an underground nuclear explosion by at least a factor of 70 by
employing the cavity decoupling evasion scenario, it follows that comprehensive
monitoring of underground nuclear tests in the 1 to 10 kt range will necessarily
involve identification analyses of small seismic events with magnitudes in the
range 2.0 < mp < 3.5. However, since such small events are generally not
recorded teleseismically, their magnitudes are typically determined using one of
the many proposed regional magnitude scales (ML). This constitutes a problem in
that such regional magnitude measures are defined in terms of seismic phases and
frequency bands which are different from those associated with the traditional
teleseismic mp magnitude measure; and, consequently, it is not always clear how
they relate to the corresponding mp values which are used to specify seismic
monitoring capability. The objective of the research program described in this
report has been to attempt to develop an improved quantitative understanding of
the relationship between ML, and mp for small underground nuclear tests. This
has been accomplished through analyses of synthetic data obtained by
theoretically scaling observed regional seismic data recorded from tamped
underground nuclear tests to obtain estimates of the corresponding seismic signals
to be expected from small cavity decoupled nuclear tests at those same source
locations.




This report presents a summary of the research investigations which have
been conducted during the project in an attempt to define improved means for
calibrating regional magnitude scales for use in seismic monitoring. The
problem of magnitude determination for small seismic events is reviewed in
Section 2 where the magnitude ranges of potential interest in the seismic
monitoring of underground nuclear testing are assessed and various proposed
regional magnitude measures are described and compared. This is followed in
Section 3 by the presentation of a detailed magnitude estimation analysis which is
conducted using theoretically scaled regional seismic data corresponding to those
to be expected from small cavity decoupled nuclear tests conducted at various
locations near Scandinavia and in Central Asia. The report concludes with
Section 4 which contains a summary and statement of conclusions regarding the
current state of understanding with respect to magnitude determinations for small
underground nuclear explosions.

2. MAGNITUDE DETERMINATIONS FOR SMALL SEISMIC
EVENTS

2.1 mjy Versus Yield For Underground Nuclear Explosions

The seismic monitoring of underground nuclear testing is greatly
complicated by the fact that the seismic measure of source size is a magnitude,
which is determined from the amplitudes of the recorded seismic signals using
empirically determined algorithms, whereas it is the explosive energy release or
yield which is of primary interest for treaty monitoring and intelligence
purposes. Consequently, much research has been conducted over the past 30
years in attempts to quantitatively relate various magnitude measures to explosion
yield. For a variety of technical and historical reasons, most of this research has
focused on the teleseismic mp body wave magnitude measure; and, as a result,
seismic monitoring capability is typically described in terms of detection and
identification thresholds which are expressed in mp units. However, it has long
been recognized that a given mp value may correspond to a rather wide range of
possible yield values depending on the explosive source conditions and the
characteristics of the propagation paths from the source area to the stations of the




monitoring network. These dependencies are schematically illustrated in Figure
1, where approximate mp/yield curves corresponding to different testing
conditions are compared. In this case, the upper reference curve labeled "Good
Coupling/Stable Region" corresponds to the mp/yield relation

mp = 445+0.75logW (1)

which is associated with tamped explosions at nominal containment depths in
hardrock at test locations in stable continental interior regions, such as the former
Soviet Semipalatinsk test site. The corresponding "Good Coupling/Tectonic
Region" curve shown in this figure was obtained from (1) by subtracting 0.40
units mp to account for upper mantle attenuation bias such as that observed
between NTS and Semipalatinsk. The curves labeled "Low Coupling” in this
figure are meant to be representative of explosions in dry porous media such as
the dry alluvium and tuff media at NTS and are offset below the corresponding
reference hardrock curves by 0.75 units mp. Finally, the curves labeled "Cavity
Decoupled" are shown offset below the reference hardrock curves by 1.85 units
mp (i.e. the logarithm of the nominal full decoupling factor of 70). Thus, 1 kt
fully decoupled nuclear tests at normal containment depths in stable and tectonic
regions are expected to correspond on average to mp values of 2.6 and 2.2,
respectively. Similarly, 10 kt fully decoupled explosions in stable and tectonic
regions are expected to correspond to mp values of 3.35 and 2.95, respectively.
As a further specific point of reference, 1 kt and 10 kt fully decoupled explosions
in good coupling media at NTS would be expected to correspond on average to
mp values of about 2.1 and 2.9, respectively. Further variations of several tenths
of a magnitude unit from these average values may be expected for cavity
decoupled tests conducted in different media, or at depths significantly different
from the nominal containment depths for tamped explosions with comparable
yields.

In any case, it follows from the above discussion that comprehensive
monitoring of underground nuclear testing in the 1 to 10 kt range will necessarily
involve analyses of small seismic events with magnitudes in the range 2.0 < mp <
3.5, at least in regions where cavity decoupling is considered to be feasible over
this yield range. Of course, such events will not be detected teleseismically; and,
while it is possible to estimate the equivalent mp ranges using first order
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analytical models, measured mp values will not be available for such explosions.
That is, the magnitudes of these events will have to be determined from seismic
data observed at regional distances using one or more of the proposed local
magnitude algorithms. However, since these magnitudes are generally estimated
using seismic phases and frequency bands which are different from those
employed in the teleseismic my scale, it is often not clear how they relate to mp,
particularly for small events for which no direct calibration data are available.
This uncertainty has significant implications with respect to seismic monitoring,
because ultimately the analysis threshold for bulletin preparation will have to be
expressed in terms of a local magnitude. It follows that it is important to
establish a firm, quantitative understanding of the relationship between mp and
selected local magnitude measures for small, cavity decoupled nuclear explosions
of monitoring concern.

2.2 ML and Other Regional Magnitude Scales

The magnitude scale originally defined by Richter (1935) was intended to
measure the relative sizes of seismic events in southern California recorded by
stations equipped with a standard seismograph system (viz Wood-Anderson). The
Richter magnitude scale, like most of the ML magnitude scales which have
followed, was basically a short-period measure of the maximum trace amplitude
with a correction for attenuation. Gutenberg (1945a,b) made the magnitude scale
more generally applicable by introducing the surface-wave magnitude, Mg, and
body-wave magnitude, mp, based on teleseismic measurements. These mp and
Mg scales have traditionally been the most widely used for measuring the sizes of
teleseismic events. Although it was originally intended that the different
magnitude scales should provide a consistent measure of source strength, it is
recognized today that this is not the case. Among the reasons for such differences
in the magnitude measures are variations in path attenuation from the nominal
corrections, excitation differences related to depth, source geology, and
mechanism, and differences in station site response and recording instruments. In
principle, adjustments could be made to account for these differences, but the
required information is not always available and simplifying assumptions are
often made.




The magnitude problem is further complicated by the proliferation of
regional stations and station networks over the past two decades. In many areas
the seismic events recorded by these regional stations are small, and they may not
be recorded by stations outside the region. In such situations magnitude
calibration may be difficult and ad hoc procedures, similar to those originally
applied by Richter, are often used to establish a local magnitude scale.

One of the most widely used magnitude scales for use with regional stations
is the mp(Lg) scale developed by Nuttli (1973). This scale is based on a measure
of the amplitude of the high-frequency regional Lg phase and is corrected for
propagation effects using an attenuation model which is specific to each region.
However, variations also exist in the techniques used for the mp(Lg) scale which
again may produce inconsistency in comparison to other magnitude measures.
Variations in the frequency passband of the signal, window selection and
amplitude measurement procedure (e.g., RMS versus peak), and attenuation
differences and radiation pattern (especially for small numbers of stations) can all
alter the mp(Lg) measurement and complicate its interpretation in terms of source

strength.

As a result of installation of the ARPA regional arrays in Fennoscandia and
Central Europe, the seismic monitoring thresholds in this broad region have been
pushed to a very low level. Over the years several different magnitude scales
have been used to describe the sizes of seismic events in the Fennoscandia region.
Ringdal (1983) adapted Nuttli's mp(Lg) magnitude technique for application to
regional array digital data recorded in Norway and proposed an additional
magnitude technique based on regional P coda. Sereno and Bratt (1988) applied
an inversion technique to the amplitude spectra of Pp and Lg signals from
Fennoscandian events recorded at NORESS and derived region-specific
attenuation relations for the two phases which could be used to refine regional-
phase magnitude formulae. The latter study also offered some insight into the
detection capabilities of NORESS as a function of frequency and distance for
specific magnitude thresholds based on the attenuation model derived from the
inversion.




Bath et al. (1976) developed a local magnitude scale, analogous to the
Richter scale, which was widely used throughout Scandinavia to define the
relative sizes of small events. The Béth et al. local magnitude formula is:

ML = 1log(100-D) + F(A,T) (2)

where D is the maximum amplitude of the Lg ground motion in micrometers, A
is epicentral distance in km, T is the dominant period of the measured phase in
seconds, and F(A,T) is a correction for attenuation and shape of the instrument
response curve which has been tabulated for ranges from 50 km to 1500 km and
dominant periods from 0.3 sec to 1.4 sec based on observations from events
around Sweden. This Bith magnitude formula was used at NORSAR originally
to compute ML from NORESS data, with the D and T being computed
automatically for Lg using the RONAPP signal processing module (cf.
Mykkeltveit and Bungum, 1984). The amplitude D at this time was measured as
the maximum amplitude of the Ly phase from a coherent beam steered to the Lg
velocity and the azimuth determined from f-k analysis and T was determined by
averaging the periods of several cycles near the peak amplitude. Subsequently,
the NORESS algorithm was modified to the form

ML = log(100°A) + B(A,To) 3)

where A is the peak Ly amplitude measured in a group velocity window between
3.0 and 3.6 km/sec from the 2-4 Hz filtered incoherent beam and B is the same as
the F(A,T) defined by Bath except that the correction term is at a fixed frequency
of 2.2 Hz, approximating the dominant frequency of the Lg, which is also used to
determine an approximate instrument response to use in correcting the trace
amplitude to ground motion in micrometers.

2.3 Local Magnitude Determination in the Prototype International
Monitoring System (IMS)

The local magnitude algorithm which has been in use at the prototype IMS
running at the ARPA Center for Monitoring Research (CMR) over the past
several years is quite different from the traditional ML measures described in the



preceding section (Bache er al., 1991). In particular, it is based on measurements
of the amplitudes of four distinct regional phases: Pn, Pg, Sn and Lg. These
amplitude measurements and associated magnitude determinations are made for
the array stations NORESS, ARCESS, FINESA and GERESS when those stations
are at ranges of 15° or less from the seismic events. The phase amplitudes are
measured from the incoherent beams at each array formed from the vertical
component traces filtered in the 2-4 Hz frequency band. The amplitudes used for
the ML computations are based on the short-term, average (STA) amplitudes
determined by averaging the incoherent beam records over 1 second time
windows and are defined to be the maxima of the STA's in the 4 second windows
following the automatically determined detection times for each phase.

The STA amplitudes determined from the incoherent beams are next
corrected for noise using the long-term average (LTA) amplitudes determined
from the average of the incoherent beam record over a long time window prior
to the P phase for the event. The actual length of the LTA window appears to be
station dependent but usually is on the order of 50-60 seconds. If there is no
detected P phase at a station for a particular event, ML is not measured at that
station. ML is also only used for a particular phase if the STA for that phase is at
least 1.1 times as large as the LTA. So, we now have for the noise-corrected
amplitude for each phase

Amp = (STA2-LTA2)12 4

The final magnitude formulae involve a correction for station distance
(attenuation) and a normalization to the ML procedures of the past, specifically

those used in the previous version of the IMS processing system. The current
magnitude formulae are of the form:

ML(phase) = log(Amp) + A + BeA + Celog(A) )

where A is the epicentral distance in kilometers. Different attenuation relations
are defined for each of the regional phases, Pn, Pg, Sp and Lg, as shown in Table
1. The attenuation relationships (involving the B and C coefficients) are the same
for NORESS, ARCESS and FINESA but different for GERESS. Normalization
terms (the A term in the My, formula) are different for each array and are set



Table 1: Attenuation and Normalization Terms for use in ML
Formulae for Different Regional Phases and Array Stations

Station Phase A B C o

ARCESS Pn -5.942 0.0 1.9793 0.236
ARCESS Pg -3.894 0.00073674 1.0 0.221
ARCESS Sh -4.053 0.00065665 1.0934 0.115
ARCESS Lg -4.140 0.00071908 1.0 0.147
FINESA Pn -5.235 0.0 1.9793 0.236
FINESA Py -3.095 0.00073674 1.0 0.221
FINESA S -3.313 0.00065665 1.0934 0.115
FINESA Lg -3.379 0.00071908 1.0 0.147
GERESS Pn -5.082 0.000394 2.052 0.393
GERESS Pg -4.247 0.000883 1.665 0.401
GERESS Sn -3.337 0.00117 1.168 0.340
GERESS Lg -7.735 0.00109 2.906 0.336
NORESS Pp -6.005 0.0 1.9793 0.236
NORESS Pg -3.773 0.00073674 1.0 0.221
NORESS Sn -4.050 0.00065665 1.0934 0.115
NORESS Lo -4.095 0.00071908 1.0 0.147

corresponding to the signal amplitude measured in digital counts (not
nanometers). Thus, in this formulation the propagation path corrections to any
given array are taken to be the same for any event lying within 15° of that array;
and the associated distance attenuation corrections are taken to be the same for all
such events recorded at the three Scandinavian array stations. The implications
of these assumptions with respect to possible region-specific biases in the ML

determinations will be discussed further in the following sections.

The final IMS ML, value is determined from a weighted sum of all phase
magnitudes using the individual phase uncertainty values (o) listed in Table 1. It
can be seen that the inverse variance weighted averaging algorithm is the same
for all three Scandinavian arrays and is given by

ML = 0.11 M(Py) + 0.13 M(Pg) + 0.47 M(Sp) + 0.29 M(Ly) (6a)

9




while for GERESS

ML = 0.21 M(Pp) + 0.21 M(Pg) + 0.29 M(Sn) + 0.29 M(Lg) (6b)

Thus, the local magnitude determinations at the three Scandinavian arrays are
heavily weighted on the Sy and Lg phases; while those at GERESS represent a
more nearly even weighting of the data from the four different phases. Such
differences between stations serve to illustrate the fact that calibration of multi-
phase magnitude algorithms is a complex task.

2.4 Calibration of Regional Magnitude Scales

As was noted previously, a primary design objective of all magnitude scales
implemented since the original formulation of Richter has been that they provide
consistent and unbiased measures of source strength. However, because the wide
variety of magnitude measures which have been proposed over the years are
based on a multitude of seismic phases and encompass a range of different
dominant frequencies, it has proved to be very difficult to quantitatively reconcile
the various magnitude scales. That is, even after careful calibration for regional
propagation path differences, the empirical nature of most magnitude measures
makes it difficult to determine the absolute levels of the scales relative to some
standard, such as teleseismic mp. For calibration of regional magnitude scales,
the general practice has been to assemble a sample of events which are large
enough to have been recorded at both regional and teleseismic distances and to
directly compare the regional and teleseismic magnitudes for such events to
determine an average calibration constant. Thus, for example, Ringdal and Fyen
(1991) investigated Lg and P-coda magnitudes measured at the NORSAR array
from Novaya Zemlya nuclear explosion tests. Figure 2 shows comparisons of the
regional magnitudes from these events with mp's determined from teleseismic
measurements. The least-squares line fits to the data indicate close
correspondence between the different magnitude measures at high magnitude
levels, with M(Lg) = M(P coda) = mp at mp = 5.8, where the relations are best
constrained by the available data. Note, however, that the slope of the least-
squares fit to these M(Lg) versus mp data is significantly less than 1.0. In fact,

10
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Figure 2. Comparisons of L _ magnitudes (top) and regional P-coda magnitudes (bottom) determined at
NORSAR with teleseismic my for Novaya Zemlya nuclear explosion tests (after Ringdal and Fyen, 1991).
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this fit predicts an M(Lg) value of about 4.8 for an event with mp = 4.4 and, if
the same relation applies to lower magnitude levels, would predict an M(Lg)
value of about 3.4 for an event with mp = 2.5. This is obviously a major
discrepancy which would have to be carefully considered in any assessments of
monitoring requirements.

More generally, because such empirical magnitude calibrations are
necessarily confined to events which are large enough to be well recorded
teleseismically (mp > 4), extrapolations down into the mp = 2 range will always
be subject to considerable uncertainty. This is particularly true for magnitude
measures based on data representative of frequency bands significantly different
from the nominal 1 Hz band usually associated with teleseismic mp. In such
cases, variations in source corner frequency effects as a function of magnitude
may result in nonlinear relations between the two magnitude scales. This
situation is schematically illustrated in Figure 3 for a hypothetical case in which a
local magnitude measure has been calibrated to mp using data from large events.
Clearly, supplemental data and analysis procedures are required to reduce these
magnitude estimation uncertainties for small seismic events.

3. SIMULATION ANALYSIS OF REGIONAL MAGNITUDE
DETERMINATION FOR SMALL CAVITY DECOUPLED
UNDERGROUND NUCLEAR EXPLOSIONS

3.1 Description of the Source Scaling Model

An obvious means for improving calibration of regional magnitude scales
for use in seismic monitoring would be to directly determine such magnitudes
using data observed from small decoupled explosions of known yield.
Unfortunately, however, the only such data which are known to exist consist of a
few near-regional recordings from the small U.S. decoupling test STERLING
and from the Soviet partial decoupling experiment conducted at Azgir in 1976.
Since these data sample very restricted ranges of source and propagation path
conditions, they are of limited use for magnitude calibration purposes. An
alternate approach which has been pursued in the present study is to theoretically
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scale observed regional seismic data recorded from tamped underground nuclear
tests to obtain estimates of the corresponding seismic signals to be expected from
small cavity decoupled tests at those same source locations. Since the mp values
corresponding to such synthetic data are directly calculable, regional magnitude
measures determined from these signals can be evaluated as functions of mp down
to very low thresholds, thus providing an improved basis for calibration.

The scaling procedure used to derive the synthetic regional seismic data
analyzed in this study has been described in detail by Murphy and Barker (1994).
In this approximation, if the elastic radius of the seismic source of the tamped
reference explosion of the yield W is denoted as relz, then the elastic radius for

the corresponding cavity decoupled explosion is

relp

rely

where DF denotes the decoupling factor for a particular yield/cavity volume
ratio. For the purposes of the scaling exercises described in this report, values
for relz have been assigned to each explosion using the Mueller/Murphy scaling
relations for tamped explosions in granite (Mueller and Murphy, 1971). For
each selected tamped explosion we have considered a range of decoupling factors
which increase incrementally by factors of 2 such that DF = 2,4,8,..., 70 WT
where 70 Wt corresponds to the case of 1 kt fully decoupled with a low
frequency decoupling factor of 70. Now, for values of Wt < 100 kt, the corner

frequency of the tamped explosion source generally lies above 1 Hz and,
consequently, the mp values corresponding to such a sequence of partially

decoupled synthetic explosions can be approximated simply as
mpi = mp(T) - log (2,4.8,..., 70 WT) ®)

where mp(T) is the observed mp value of the tamped explosion with yield Wt. A
typical sequence of such source spectrum scaling operators is shown in Figure 4
for the Soviet JVE event, where a nominal seismic yield of about 115 kt has been
used for that explosion. It can be seen from this figure that the scaling is strongly
frequency dependent over this regional band extending from 0.1 to 20 Hz,
particularly for the operators corresponding to the lower yield decoupled

14
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Figure 4. Frequency dependent source scaling operators used to theoretically
scale observed regional recordings from the Soviet JVE to simulate the signals

expected from various cavity decoupling scenarios.




explosions. It has been found that such simple approximations to the frequency
dependent effects of cavity decoupling are remarkably consistent with the
observed short-period data recorded from such tests (Murphy, 1977). This fact
is illustrated in Figure 5, where the broadband seismic data observed from
STERLING (top) at a station located 16 km from the source has been
theoretically transformed into the seismic signal expected from the tamped 5.3 kt
SALMON explosion at that same station (center) using a simple source spectral
ratio consistent with those shown in Figure 4. Comparison of this synthetic with
the corresponding observed SALMON data from that station (bottom) reveals
excellent agreement with respect to amplitude level, waveform and relative
spectral composition. It is concluded that the proposed source scaling model
should provide useful approximations to the regional seismic signals to be
expected from small, cavity decoupled nuclear explosions.

3.2 Comparison of Magnitude Estimates Determined From Synthetic
Regional Waveform Data

The sample of tamped underground nuclear explosions for which regional
seismic data were scaled using the procedures described in the preceding section
are listed in Table 2. It can be seen that the selected sample represents four
different test locations (i.e., Novaya Zemlya, Semipalatinsk (JVE), Lop Nor and a
Soviet PNE site near Archangel at 66°N, 41°E), as well as propagation paths in

Table 2: Tamped Explosion Data Sample

Estimated
Event Station Yield, kt A, km
Novaya Zemlya 10/24/90 ARCESS 65 1110
PNE (Archangel) 7/18/85 NORESS 8.5 1564
Soviet JVE 9/14/88 WMQ 115 950
Soviet JVE 9/14/88 GARM 115 1380
Soviet JVE 9/14/88 ARU 115 1530
Lop Nor 8/16/90 GARM 215 1590
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Scandinavia and Central Asia over an epicentral distance range extending from
about 8.5° to 14°. The map locations of these selected explosions and recording
stations are shown in Figure 6. The yield values listed in this table are
approximate and represent a mix of announced and inferred values which should
be accurate enough for the purposes of the present investigation. Short-period,
vertical-component recordings corresponding to each of the entries in Table 2
have been theoretically scaled down to a source level representative of a 1 kt fully
decoupled explosion at each of these source locations using source scaling
operators comparable to those shown for the JVE explosion in Figure 4. Not
surprisingly, such frequency dependent scaling can have some pronounced effects
on the characteristics of the corresponding broadband regional seismograms.
This is illustrated in Figure 7 which shows the results of scaling the IRIS station
GARM recording of the Soviet JVE (A = 1380 km) using the range of source
scaling operators from Figure 4. It can be seen that in this case the lower
frequency Lg and Rg signals are progressively attenuated with respect to the
higher frequency P signals as the data are scaled to lower mp values. Clearly,
such large variations in relative phase amplitudes can be expected to have
pronounced effects on at least some regional magnitude measures. Similar
scaling results for the other five source/station pairs of Table 2 are shown in
Figures 8-12. Note that in all of these scaling exercises, the noise has been scaled
along with the signal, so that these data are not directly applicable to assessments
of variations of signal-to-noise ratios with decreasing magnitude. This
representation is convenient for the purposes of the present study in that it allows
us to analyze the magnitude calibration issues without having to simultaneously
consider the complicating effects of frequency dependent noise. The influence of
background noise on magnitude determination for small events will be addressed
in a later section in conjunction with an assessment of the relative utility of
various alternate regional magnitude measures.

Regional magnitudes have been determined for each of the sequence of
synthetic seismograms shown in Figures 7-12 using the IMS algorithm described
in Section 2.3. That is, the synthetic data have been bandpass filtered in the 2-4
Hz band; and the maximum amplitudes in 4 second windows following the
expected onset times of the Py, Pg, Sy and Lg phases have been measured. Note
from Figures 7-12 that there are a number of cases where there are no obvious
arrivals at the marked group arrival times, especially for Pg. In a fully automatic

18
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system such as the prototype IMS, it is unlikely that there would be phase
detections at some of these designated times; and, consequently, no corresponding
phase magnitudes would be determined by the system. However, for the purposes
of the present analysis, all four phase amplitudes were measured in every case on
the basis of the nominal expected group arrival times.

The individual phase magnitudes determined from the sequence of
seismograms derived from the ARCESS recording of the Novaya Zemlya
explosion of 10/24/90 (cf. Figure 8) are plotted versus mp in Figure 13, where
the corresponding ML, = my, relations are also shown as solid lines for reference
purposes. It can be seen that there is some curvature in the ML versus mp
relations for the larger events, which is associated with the translation of the
decoupled source function corner frequency through the selected 2-4 Hz passband
as the decoupling effectiveness increases. However, the inferred relations
between Mj, and mp all become linear at the low magnitude levels of principal
interest, where they can be directly compared with the ideal linear relation. It
can be seen from this figure that the individual phase magnitudes for this
explosion show some significant departures from the expected ML, = mp relations,
with the P, and Sp values biased high by about 0.6 magnitude units and the Lg
values biased low by about 0.4 magnitude units for the smaller events. This
broad scatter is presumably due to the fact that the phase propagation paths from
Novaya Zemlya to ARCESS are quite different from those of the regional
earthquakes and mine blasts which were used to calibrate the ARCESS magnitude
determination algorithm. Such variability in propagation path effects can be
illustrated by a direct comparison of this Novaya Zemlya explosion recording at
ARCESS (Figure 8) with the PNE explosion at NORESS (Figure 9). Note the
dramatic differences in relative phase excitation (e.g., Sn/Lg) for these two
propagation paths located within 15° of these Scandinavian array stations.

The implications of these differences with respect to magnitude
determination are illustrated more clearly in Figure 14 where the individual
phase and weighted average magnitudes are compared for the scaled Novaya
Zemlya and PNE recordings corresponding to mp = 3.0. It can be seen that,
except for the Ly magnitude, the estimated magnitudes for the PNE event are all
close to the expected value of 3.0, which reflects the fact that these data were
recorded from a well calibrated path. The Novaya Zemlya values on the other
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Figure 14. Comparison of regional phase magnitudes estimated for two
underground nuclear explosions with m, = 3.0 using data recorded over
different propagation paths to the ARCESS and NORESS array stations.
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hand are widely scattered, consistent with the differences in relative phase
amplitudes noted above. This example dramatically illustrates the fact that, even
for very extensively calibrated stations like ARCESS, significant biases can occur
for events occurring in locations which are not represented in the calibration
database.

Another notable anomaly illustrated by Figure 14 is the tendency for the
explosion Lg magnitudes to be lower than those determined from the other
phases. This has been found to be a consistent result of the study, even for well-
calibrated propagation paths, and it seems likely that this apparent bias is due to
systematic differences in relative phase excitation levels associated with the
different source types. That is, since the regional magnitude determination
algorithms are generally calibrated using earthquake and mine blast data, it can
be expected that the Ly magnitudes will be biased low for explosion sources, due
to characteristic differences in the average Lg/P amplitude ratios for these
different source types. Support for this hypothesis is provided in Figure 15,
which shows the individual phase magnitudes for five mine blast events recorded
in the 800-1200 km distance range from ARCESS and NORESS, normalized to
an average P wave magnitude of 3.0. It can be seen that for these sources, the Lg
magnitudes are comparable to those determined from the other phases, unlike the
nuclear explosion results of Figure 14. An interesting consequence of these
differences in relative phase excitation is that, even after extensive calibration
with earthquake and mine blast sources, regional magnitude determinations for
nuclear explosions will be lower than the corresponding mp values, at least in
those cases in which Lg data are used. It follows that if a decision is made to
monitor to an myp threshold corresponding to a particular cavity decoupling
evasion scenario, it will be necessary to analyze events down to a somewhat lower
regional magnitude threshold which will depend on the specific details of the
regional magnitude algorithm employed.

The regional phase magnitudes determined from the scaled Central Asian
recordings of the Soviet JVE explosion and the Chinese Lop Nor explosion of
8/16/90 corresponding to mp = 3.0 are displayed in Figure 16, where it can be
seen that the individual values vary by as much as two full magnitude units for
this selected sample of data. In these examples, the individual phase magnitudes
were again estimated using the Scandinavian propagation algorithms in order to
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Figure 15. Comparison of individual regional phase magnitude estimated from mine blast
data recorded at ranges of 800-1200 km from the ARCESS and NORESS array stations.
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Figure 16. Comparison of regional phase magnitudes estimated for underground nuclear
explosion with my = 3.0 using data recorded over selected Central Asia propagation paths.




provide a constant reference base for comparison purposes. Consequently, it
could be expected that careful path calibration studies for these specific paths
would result in a significant reduction in the variability displayed here.
However, these results do serve to dramatically emphasize the very strong
dependence of regional phase characteristics on the properties of the propagation
paths. It follows that the addition of new stations to a regional monitoring
network will generally necessitate the collection and detailed analysis of large
representative calibration databases for each station before these stations can be
expected to contribute meaningful data for use in the determination of regional
magnitudes.

It can also be seen from Figure 16 that the Ly magnitudes determined from
these Central Asian recordings show the same tendency to be low relative to the
other phase magnitudes which was noted previously for the Scandinavian
explosions of Figure 14. In this case, of course, the lack of path specific
propagation corrections is no doubt contributing to some extent to this large
observed offset. However, as with the Scandinavian data, it appears that
characteristic source differences are also playing a role in this case. Thus, for
example, Figure 17 shows a comparison of the regional phase magnitudes
(normalized to an average P wave magnitude of 4.0) determined from the IRIS
station GARM recordings of the Lop Nor explosion of 8/16/90 and an earthquake
(11/03/90) located within 100 km of the Lop Nor test site. In this case, it can be
seen that there are significant differences in the relative regional phase
magnitudes for these two source types recorded over a nearly common
propagation path, with the earthquake showing evidence of much larger S/P and
Lg/P amplitude ratios than the explosion in this selected 2-4 Hz frequency band.
The differences in this case are even larger than those found in the corresponding
Scandinavian comparisons (cf. Figures 14 and 15). This may reflect the fact that
the Lg/P excitation differences between earthquakes and nuclear explosions are
larger than those between the mine blasts and nuclear explosions used in the
Scandinavian comparisons. In any case, this Central Asian example is consistent
with the Scandinavian results in that it indicates that regional magnitude
algorithms which are calibrated using earthquake and mine blast data will not be
directly applicable to nuclear explosion data.
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Figure 17. Comparison of regional phase magnitudes determined from the IRIS station
GARM recordings (A = 1600 km ) of the Lop Nor nuclear explosion of 8/16/90 and
an earthquake (11/03/90) located within 100 km of the Lop Nor test site.
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3.3 Preliminary Evaluation of Alternate Magnitude Measures

The analyses presented above have focused exclusively on the prototype
IMS regional magnitude algorithm developed for the ARPA array stations. That
is, they have been limited to consideration of a single magnitude measure based
on a particular weighted average of four regional phase amplitudes (i.e., Pn, Pg,
Sn and Lg) measured from seismic recordings filtered in the 2-4 Hz passband. It
is natural to question, therefore, whether there might not be other phase
weightings or frequency bands which would - provide more nearly optimal
measures of source size for use in seismic monitoring. In general, this is a
complex question, particularly in the context of implementation in an automatic
system which must perform reliably over a wide range of operating conditions.
For such applications, issues related to frequency dependent noise variability and
calibration complexity can play important roles in the algorithm selection
process. In the following preliminary analysis, a number of these factors will be
considered separately in an attempt to illustrate their relative importance with
respect to regional magnitude determination.

Considering first the effects of frequency, Figure 18 shows a comparison
of the frequency dependent variations of the four selected phase magnitudes over
the band extending from about 1 to 6 Hz, as determined from data recorded from
the selected nuclear explosions, scaled to a common value of mp = 3.0. In these
examples, the Scandinavian propagation corrections for the nominal 2-4 Hz band
(plotted at a center frequency of about 3 Hz in Figure 18) were applied in all
cases; and, consequently, these results are far from optimal for the different
frequency bands and propagation paths. However, they do provide a clear
picture of the relative difficulty of the magnitude calibration problem as a
function of these variables. Thus, for example, it can be seen that the variability
generally increases with increasing frequency, which suggests that high frequency
magnitude estimates will be quite sensitive to the accuracy of the inferred
propagation path corrections for the different regions of interest. Furthermore,
it can be seen from Figure 18 that the observed variability for the Sy magnitude
measure is generally larger than those for the other phase magnitudes,
particularly at the higher frequencies. This may reflect the well-documented
strong dependence of Sp amplitudes on regional variations in upper mantle
velocity and attenuation characteristics.
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This dependence of observed variability on regional phase type and
frequency is illustrated more clearly in Figure 19 where the standard deviation
(oM) of the individual phase magnitude determinations from Figure 18 are
plotted as a function of frequency for each phase. It can be seen that oM
increases with increasing frequency for all four phases, and achieves a minimum
value of about 0.14 at a frequency of about 1 Hz for the Pg phase. This is
somewhat ironic in that, as was noted previously in conjunction with the
discussions of Figures 7-12, Py is often not a distinct phase in these data; and
M(Pg) often simply represents a P coda measurement. In any case, a
straightforward interpretation of these results would seem to suggest that low
frequency P wave data might provide the basis for a more stable regional
magnitude measure than that provided by the IMS algorithm. However, while
there might be some merit to this suggestion for well-recorded, larger events, it
ignores the fact that the noise background is strongly frequency dependent. Thus,
Figure 20 shows a comparison of average noise spectra estimated for the stations
ARCESS, NORESS, ARU, GARM and WMQ which have been used in the present
study. It can be seen that in all cases the noise levels decrease rapidly between 0.5
and 2.0 Hz, beyond which they generally continue to decrease at slower rates.
Thus, the benefits associated with the improved stability of lower frequency data
must be traded off against the general increase in noise level with decreasing
frequency in the system design process. This is particularly true in cases where
the smallest events of interest have magnitudes down near the detection thresholds
of the seismic monitoring system. In such cases, data processed in bands below
about 2 Hz will often not be recorded at useful signal-to-noise ratios.

Another factor to be considered in evaluating the results of Figure 19 is
that there can be significant differences in the degree of difficulty of correcting
for the effects of propagation on the various regional phase amplitudes. Thus,
for example, although the oM values of Figure 19 indicate that the P wave data
are least sensitive to propagation path variations for this sample of data,
procedures for correcting for such effects are much more highly developed for
the Ly phase than they are for the P phases. In this regard, it is worth noting
from Figure 18 that the data recorded from the Lop Nor explosion at GARM
provide Sp and Ly magnitude measures for that event which are significant

outliers over much of the analyzed frequency band. Elimination of this one
recording from the variance analysis leads to the revised oM results shown in
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Figure 19. Standard deviation of the individual phase magnitudes as a function of frequency.
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Figure 20. Average background noise levels as a function

of frequency for the five selected regional stations.
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Figure 21, where it can be seen that the Ly magnitude results are now very
comparable to those obtained using the P phase data. Thus, if such variations in
Ly propagation path effects can be reliably corrected using established
procedures, there may be good reasons to prefer a magnitude measure based on
that phase, particularly since such magnitudes have already been widely applied to
both earthquake and nuclear explosion data. Additional research will be required
in order to determine which of the available regional magnitude measures
provides the best measure of source size for use in nuclear monitoring.

4. SUMMARY AND CONCLUSIONS

4.1 Summary

Given that the feasibility of the cavity decoupling evasion scenario has been
experimentally confirmed, it follows that conclusive monitoring of any eventual
CTBT will necessarily involve analyses of seismic signals recorded from small
events with magnitudes approaching a threshold which is on the order of mp =
2.0 for evasively tested 1 kt nuclear explosions. However, the definition of
meaningful magnitude measures for such small events remains as a major issue
affecting assessments of seismic monitoring capability. That is, since such events
are not expected to be detected teleseismically, their magnitudes will have to be
estimated from regional distance recordings using seismic phases and frequency
bands which are different from those employed in the teleseismic myp scale which
has traditionally been used to specify seismic monitoring capability. The
investigations summarized in this report have centered on an attempt to
quantitatively relate these different magnitude measures through analyses of
synthetic regional seismic data corresponding to those to be expected from low
yield cavity decoupled nuclear explosions at a variety of different test locations.

The problem of magnitude determination for small seismic events was
reviewed in Section 2, where the magnitude ranges of potential interest in the
seismic monitoring of underground nuclear testing were assessed and a variety of
proposed regional magnitude measures were described and compared. In
particular, the regional magnitude determination algorithm which has been
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Figure 21. Modified estimates of the standard deviation of the
individual phase magnitudes as a function of frequency.

40



implemented in the prototype International Monitoring System (IMS) running at
the ARPA Center for Monitoring Research was reviewed; and it was concluded
that it is quite different from most of the other ML measures which have been
proposed since Richter's original formulation of the seismic magnitude scale in
that it incorporates data from the four distinct regional phases Pn, Pg, Sn and Lg.

The calibration of regional magnitude determinations for small nuclear
explosions was considered in Section 3 using theoretically scaled regional seismic
data corresponding to those to be expected from low yield cavity decoupled tests
conducted at various source locations near Scandinavia and in Central Asia.
Analyses of these synthetic data indicated that, even for well-calibrated stations
such as the ARPA Scandinavian arrays, regional seismic magnitude measures can
show pronounced dependence on variables such as source type and location.
More specifically, it was demonstrated that differences between explosion and
earthquake regional phase characteristics, such as the average Lg/P amplitude
ratio, can lead to consistent biases between regional magnitude estimates for
explosions and earthquakes having comparable mp values. It follows that
regional magnitude algorithms which have been calibrated using earthquake and
mine blast data will not be directly applicable to nuclear explosion data, and this
fact will need to be considered in any assessments of the capabilities of proposed
seismic networks for use in CTBT monitoring.

4.2 Conclusions

The research summarized above supports the following general conclusions
regarding the calibration of local magnitude scales for use in seismic monitoring.

(1) Comprehensive seismic monitoring of underground nuclear testing
in the 1 to 10 kt range will necessarily involve analyses of small seismic
events with magnitudes in the range 2.0 < mp < 3.5, at least in regions
where cavity decoupling is considered to be feasible over this yield range.

(2) The wide variety of regional magnitude scales which have been

proposed to measure source size are based on a multitude of different
seismic phases and encompass a wide range of dominant frequencies; and,
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consequently, they can not be simply related to the teleseismic mp scale
which has traditionally been used to specify seismic monitoring capability.

(3) Even for extensively calibrated stations such as the ARPA
Scandinavian arrays, significant magnitude biases can occur for events with
epicenters in areas which are not well represented in the calibration
databases.

(4) Regional magnitude determination algorithms which have been
calibrated using earthquake and mine blast data can be expected to
underestimate the sizes of small nuclear explosions due to the systematic
differences in relative phase excitation levels (e.g., Lg/P ) associated with

the different source types.

(5) Addition of new stations to a regional monitoring network will
generally require the collection and detailed analysis of large,
representative calibration databases before such stations can be expected to
contribute meaningful data for use in the determination of regional
magnitudes.

(6) The variance of the regional phase amplitude data analyzed in this
study increases with increasing frequency above 1 Hz and is smaller for P
than for S phases. However, complications associated with the frequency
dependent nature of the seismic background noise and calibration issues
also need to be considered in selecting a regional magnitude measure for
use in seismic monitoring.
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